Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(7)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38610574

RESUMO

Significant strides have been made in the field of WiFi-based human activity recognition, yet recent wireless sensing methodologies still grapple with the reliance on copious amounts of data. When assessed in unfamiliar domains, the majority of models experience a decline in accuracy. To address this challenge, this study introduces Wi-CHAR, a novel few-shot learning-based cross-domain activity recognition system. Wi-CHAR is meticulously designed to tackle both the intricacies of specific sensing environments and pertinent data-related issues. Initially, Wi-CHAR employs a dynamic selection methodology for sensing devices, tailored to mitigate the diminished sensing capabilities observed in specific regions within a multi-WiFi sensor device ecosystem, thereby augmenting the fidelity of sensing data. Subsequent refinement involves the utilization of the MF-DBSCAN clustering algorithm iteratively, enabling the rectification of anomalies and enhancing the quality of subsequent behavior recognition processes. Furthermore, the Re-PN module is consistently engaged, dynamically adjusting feature prototype weights to facilitate cross-domain activity sensing in scenarios with limited sample data, effectively distinguishing between accurate and noisy data samples, thus streamlining the identification of new users and environments. The experimental results show that the average accuracy is more than 93% (five-shot) in various scenarios. Even in cases where the target domain has fewer data samples, better cross-domain results can be achieved. Notably, evaluation on publicly available datasets, WiAR and Widar 3.0, corroborates Wi-CHAR's robust performance, boasting accuracy rates of 89.7% and 92.5%, respectively. In summary, Wi-CHAR delivers recognition outcomes on par with state-of-the-art methodologies, meticulously tailored to accommodate specific sensing environments and data constraints.

2.
Sensors (Basel) ; 23(23)2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38067803

RESUMO

Human movement recognition is the use of perceptual technology to collect some of the limb or body movements presented. This practice involves the use of wireless signals, processing, and classification to identify some of the regular movements of the human body. It has a wide range of application prospects, including in intelligent pensions, remote health monitoring, and child supervision. Among the traditional human movement recognition methods, the widely used ones are video image-based recognition technology and Wi-Fi-based recognition technology. However, in some dim and imperfect weather environments, it is not easy to maintain a high performance and recognition rate for human movement recognition using video images. There is the problem of a low recognition degree for Wi-Fi recognition of human movement in the case of a complex environment. Most of the previous research on human movement recognition is based on LiDAR perception technology. LiDAR scanning using a three-dimensional static point cloud can only present the point cloud characteristics of static objects; it struggles to reflect all the characteristics of moving objects. In addition, due to its consideration of privacy and security issues, the dynamic millimeter-wave radar point cloud used in the previous study on the existing problems of human body movement recognition performance is better, with the recognition of human movement characteristics in non-line-of-sight situations as well as better protection of people's privacy. In this paper, we propose a human motion feature recognition system (PNHM) based on spatiotemporal information of the 3D point cloud of millimeter-wave radar, design a neural network based on the network PointNet++ in order to effectively recognize human motion features, and study four human motions based on the threshold method. The data set of the four movements of the human body at two angles in two experimental environments was constructed. This paper compares four standard mainstream 3D point cloud human action recognition models for the system. The experimental results show that the recognition accuracy of the human body's when walking upright can reach 94%, the recognition accuracy when moving from squatting to standing can reach 84%, that when moving from standing to sitting can reach 87%, and the recognition accuracy of falling can reach 93%.


Assuntos
Movimento , Radar , Criança , Humanos , Movimento (Física) , Postura , Acidentes por Quedas
3.
Sensors (Basel) ; 23(15)2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37571599

RESUMO

Automatic driving technology refers to equipment such as vehicle-mounted sensors and computers that are used to navigate and control vehicles autonomously by acquiring external environmental information. To achieve automatic driving, vehicles must be able to perceive the surrounding environment and recognize and understand traffic signs, traffic signals, pedestrians, and other traffic participants, as well as accurately plan and control their path. Recognition of traffic signs and signals is an essential part of automatic driving technology, and gesture recognition is a crucial aspect of traffic-signal recognition. This article introduces mm-TPG, a traffic-police gesture recognition system based on a millimeter-wave point cloud. The system uses a 60 GHz frequency-modulated continuous-wave (FMCW) millimeter-wave radar as a sensor to achieve high-precision recognition of traffic-police gestures. Initially, a double-threshold filtering algorithm is used to denoise the millimeter-wave raw data, followed by multi-frame synthesis processing of the generated point cloud data and feature extraction using a ResNet18 network. Finally, gated recurrent units are used for classification to enable the recognition of different traffic-police gestures. Experimental results demonstrate that the mm-TPG system has high accuracy and robustness and can effectively recognize traffic-police gestures in complex environments such as varying lighting and weather conditions, providing strong support for traffic safety.

4.
Sci Rep ; 13(1): 13981, 2023 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-37634001

RESUMO

Traditional fingerprint localization algorithms need help with low localization accuracy, large data volumes, and device dependence. This paper proposes a LoRa-based improved fingerprint localization algorithm-particle swarm optimization-random forest-fingerprint localization for indoor localization. The first improvement step involves creating a new exceptional fingerprint value (referred to as RSSI-RANGE) by adding the Time of Flight ranging value (referred to as RANGE) to the Received Signal Strength Indication (RSSI) value and weighting them together. The second improvement step involves preprocessing the fingerprint data to eliminate gross errors using Gaussian and median filtering. After noise reduction, the particle swarm optimization algorithm is used to optimize the hyper parameters of the random forest algorithm, and the best RSSI-RANGE value is obtained using the random forest algorithm. The Kriging method is then used for interpolation to establish an offline fingerprint database, and the final online recognition and localization are performed. Experimental results demonstrate that the first improvement step improves localization accuracy by 53-57% in different experimental scenarios, while the second improves localization accuracy by 25-31%. When both steps are combined, the localization accuracy is improved by 58-63%. The effectiveness of this method is demonstrated through experiments.

5.
Sensors (Basel) ; 23(4)2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36850389

RESUMO

With the global spread of the novel coronavirus, avoiding human-to-human contact has become an effective way to cut off the spread of the virus. Therefore, contactless gesture recognition becomes an effective means to reduce the risk of contact infection in outbreak prevention and control. However, the recognition of everyday behavioral sign language of a certain population of deaf people presents a challenge to sensing technology. Ubiquitous acoustics offer new ideas on how to perceive everyday behavior. The advantages of a low sampling rate, slow propagation speed, and easy access to the equipment have led to the widespread use of acoustic signal-based gesture recognition sensing technology. Therefore, this paper proposed a contactless gesture and sign language behavior sensing method based on ultrasonic signals-UltrasonicGS. The method used Generative Adversarial Network (GAN)-based data augmentation techniques to expand the dataset without human intervention and improve the performance of the behavior recognition model. In addition, to solve the problem of inconsistent length and difficult alignment of input and output sequences of continuous gestures and sign language gestures, we added the Connectionist Temporal Classification (CTC) algorithm after the CRNN network. Additionally, the architecture can achieve better recognition of sign language behaviors of certain people, filling the gap of acoustic-based perception of Chinese sign language. We have conducted extensive experiments and evaluations of UltrasonicGS in a variety of real scenarios. The experimental results showed that UltrasonicGS achieved a combined recognition rate of 98.8% for 15 single gestures and an average correct recognition rate of 92.4% and 86.3% for six sets of continuous gestures and sign language gestures, respectively. As a result, our proposed method provided a low-cost and highly robust solution for avoiding human-to-human contact.


Assuntos
COVID-19 , Ultrassom , Humanos , Gestos , Língua de Sinais , Acústica
6.
Sensors (Basel) ; 24(1)2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38203004

RESUMO

Gait recognition, crucial in biometrics and behavioral analytics, has applications in human-computer interaction, identity verification, and health monitoring. Traditional sensors face limitations in complex or poorly lit settings. RF-based approaches, particularly millimeter-wave technology, are gaining traction for their privacy, insensitivity to light conditions, and high resolution in wireless sensing applications. In this paper, we propose a gait recognition system called Multidimensional Point Cloud Gait Recognition (PGGait). The system uses commercial millimeter-wave radar to extract high-quality point clouds through a specially designed preprocessing pipeline. This is followed by spatial clustering algorithms to separate users and perform target tracking. Simultaneously, we enhance the original point cloud data by increasing velocity and signal-to-noise ratio, forming the input of multidimensional point clouds. Finally, the system inputs the point cloud data into a neural network to extract spatial and temporal features for user identification. We implemented the PGGait system using a commercially available 77 GHz millimeter-wave radar and conducted comprehensive testing to validate its performance. Experimental results demonstrate that PGGait achieves up to 96.75% accuracy in recognizing single-user radial paths and exceeds 94.30% recognition accuracy in the two-person case. This research provides an efficient and feasible solution for user gait recognition with various applications.


Assuntos
Algoritmos , Radar , Humanos , Biometria , Marcha , Redes Neurais de Computação
7.
Sensors (Basel) ; 22(23)2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36502011

RESUMO

With the increasing popularity of smart devices, users can control their mobile phones, TVs, cars, and smart furniture by using voice assistants, but voice assistants are susceptible to intrusion by outsider speakers or playback attacks. In order to address this security issue, a millimeter-wave radar-based voice security authentication system is proposed in this paper. First, the speaker's fine-grained vocal cord vibration signal is extracted by eliminating static object clutter and motion effects; second, the weighted Mel Frequency Cepstrum Coefficients (MFCCs) are obtained as biometric features; and finally, text-independent security authentication is performed by the WMHS (Weighted MFCCs and Hog-based SVM) method. This system is highly adaptable and can authenticate designated speakers, resist intrusion by other unspecified speakers as well as playback attacks, and is secure for smart devices. Extensive experiments have verified that the system achieves a 93.4% speaker verification accuracy and a 5.8% miss detection rate for playback attacks.


Assuntos
Telefone Celular , Voz , Segurança Computacional , Radar , Biometria/métodos
8.
Sensors (Basel) ; 22(22)2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36433527

RESUMO

To address the dangerous driving behaviors prevalent among current car drivers, it is necessary to provide real-time, accurate warning and correction of driver's driving behaviors in a small, movable, and enclosed space. In this paper, we propose a method for detecting dangerous behaviors based on frequency-modulated continuous-wave radar (mm-DSF). The highly packaged millimeter-wave radar chip has good in-vehicle emotion recognition capability. The acquired millimeter-wave differential frequency signal is Fourier-transformed to obtain the intermediate frequency signal. The physiological decomposition of the local micro-Doppler feature spectrum of the target action is then used as the eigenvalue. Matrix signal intensity and clutter filtering are performed by analyzing the signal echo model of the input channel. The signal classification is based on the estimation and variety of the feature vectors of the target key actions using a modified and optimized level fusion method of the SlowFast dual-channel network. Nine typical risky driving behaviors were set up by the Dula Hazard Questionnaire and TEIQue-SF, and the accuracy of the classification results of the self-built dataset was analyzed to verify the high robustness of the method. The recognition accuracy of this method increased by 1.97% compared with the traditional method.


Assuntos
Condução de Veículo , Comportamento Perigoso , Condução de Veículo/psicologia , Radar , Ultrassonografia Doppler , Inquéritos e Questionários
9.
Sensors (Basel) ; 22(15)2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35957228

RESUMO

The positioning of indoor electronic devices is an essential part of human-computer interaction, and the accuracy of positioning affects the level of user experience. Most existing methods for RF-based device localization choose to ignore or remove the impact of multipath effects. However, exploiting the multipath effect caused by the complex indoor environment helps to improve the model's localization accuracy. In response to this question, this paper proposes a multipath-assisted localization (MAL) model based on millimeter-wave radar to achieve the localization of indoor electronic devices. The model fully considers the help of the multipath effect when describing the characteristics of the reflected signal and precisely locates the target position by using the MAL area formed by the reflected signal. At the same time, for the situation where the radar in the traditional Single-Input Single-Output (SISO) mode cannot obtain the 3D spatial position information of the target, the advantage of the MAL model is that the 3D information of the target can be obtained after the mining process of the multipath effect. Furthermore, based on the original hardware, it can achieve a breakthrough in angular resolution. Experiments show that our proposed MAL model enables the millimeter-wave multipath positioning model to achieve a 3D positioning error within 15 cm.

10.
Sensors (Basel) ; 22(16)2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-36015877

RESUMO

With the vigorous development of ubiquitous sensing technology, an increasing number of scholars pay attention to non-contact vital signs (e.g., Respiration Rate (RR) and Heart Rate (HR)) detection for physical health. Since Impulse Radio Ultra-Wide Band (IR-UWB) technology has good characteristics, such as non-invasive, high penetration, accurate ranging, low power, and low cost, it makes the technology more suitable for non-contact vital signs detection. Therefore, a non-contact multi-human vital signs detection method based on IR-UWB radar is proposed in this paper. By using this technique, the realm of multi-target detection is opened up to even more targets for subjects than the more conventional single target. We used an optimized algorithm CIR-SS based on the channel impulse response (CIR) smoothing spline method to solve the problem that existing algorithms cannot effectively separate and extract respiratory and heartbeat signals. Also in our study, the effectiveness of the algorithm was analyzed using the Bland-Altman consistency analysis statistical method with the algorithm's respiratory and heart rate estimation errors of 5.14% and 4.87%, respectively, indicating a high accuracy and precision. The experimental results showed that our proposed method provides a highly accurate, easy-to-implement, and highly robust solution in the field of non-contact multi-person vital signs detection.


Assuntos
Radar , Processamento de Sinais Assistido por Computador , Algoritmos , Frequência Cardíaca , Humanos , Taxa Respiratória , Sinais Vitais
11.
Sensors (Basel) ; 22(1)2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-35009943

RESUMO

Motion recognition has a wide range of applications at present. Recently, motion recognition by analyzing the channel state information (CSI) in Wi-Fi packets has been favored by more and more scholars. Because CSI collected in the wireless signal environment of human activity usually carries a large amount of human-related information, the motion-recognition model trained for a specific person usually does not work well in predicting another person's motion. To deal with the difference, we propose a personnel-independent action-recognition model called WiPg, which is built by convolutional neural network (CNN) and generative adversarial network (GAN). According to CSI data of 14 yoga movements of 10 experimenters with different body types, model training and testing were carried out, and the recognition results, independent of bod type, were obtained. The experimental results show that the average correct rate of WiPg can reach 92.7% for recognition of the 14 yoga poses, and WiPg realizes "cross-personnel" movement recognition with excellent recognition performance.


Assuntos
Atividades Humanas , Redes Neurais de Computação , Humanos , Movimento (Física) , Movimento , Reconhecimento Psicológico
12.
Sensors (Basel) ; 23(1)2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36616935

RESUMO

Emotions significantly impact human physical and mental health, and, therefore, emotion recognition has been a popular research area in neuroscience, psychology, and medicine. In this paper, we preprocess the raw signals acquired by millimeter-wave radar to obtain high-quality heartbeat and respiration signals. Then, we propose a deep learning model incorporating a convolutional neural network and gated recurrent unit neural network in combination with human face expression images. The model achieves a recognition accuracy of 84.5% in person-dependent experiments and 74.25% in person-independent experiments. The experiments show that it outperforms a single deep learning model compared to traditional machine learning algorithms.


Assuntos
Emoções , Expressão Facial , Humanos , Redes Neurais de Computação , Algoritmos , Tecnologia
13.
Sensors (Basel) ; 21(24)2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-34960497

RESUMO

With the new coronavirus raging around the world, home isolation has become an effective way to interrupt the spread of the virus. Effective monitoring of people in home isolation has also become a pressing issue. However, the large number of isolated people and the privatized isolated spaces pose challenges for traditional sensing techniques. Ubiquitous Wi-Fi offers new ideas for sensing people indoors. Advantages such as low cost, wide deployment, and high privacy make indoor human activity sensing technology based on Wi-Fi signals increasingly used. Therefore, this paper proposes a contactless indoor person continuous activity sensing method based on Wi-Fi signal Wi-CAS. The method allows for the sensing of continuous movements of home isolated persons. Wi-CAS designs an ensemble classification method based on Hierarchical Clustering (HEC) for the classification of different actions, which effectively improves the action classification accuracy while reducing the processing time. We have conducted extensive experimental evaluations in real home environments. By recording the activities of different people throughout the day, Wi-CAS is very sensitive to unusual activities of people and also has a combined activity recognition rate of 94.3%. The experimental results show that our proposed method provides a low-cost and highly robust solution for supervising the activities of home isolates.


Assuntos
Atividades Humanas , Ambiente Domiciliar , Humanos
14.
Sensors (Basel) ; 20(16)2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-32824397

RESUMO

Human identity recognition has a wide range of application scenarios and a large number of application requirements. In recent years, the technology of collecting human biometrics through sensors for identification has become mature, but this kind of method needs additional equipment as assistance, which cannot be well applied to some scenarios. Using Wi-Fi for identity recognition has many advantages, such as no additional equipment as assistance, not affected by temperature, humidity, weather, light, and so on, so it has become a hot topic of research. The methods of individual identity recognition have been more mature; for example, gait information can be extracted as features. However, it is difficult to identify small-scale (2-5) group personnel at one time, and the tasks of fingerprint storage and classification are complex. In order to solve this problem, this paper proposed a method of using the random forest as a fingerprint database classifier. The method is divided into two stages: the offline stage trains the random forest classifier through the collected training data set. In the online phase, the real-time data collected are input into the classifier to get the results. When extracting channel state information (CSI) features, multiple people are regarded as a whole to reduce the difficulty of feature selection. The use of random forest classifier in classification can give full play to the advantages of random forest, which can deal with a large number of multi-dimensional data and is easy to generalize. Experiments showed that WiGId has good recognition performance in both LOS (line of sight) and N LOS (None line of sight) environments.

15.
Sensors (Basel) ; 20(14)2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-32698482

RESUMO

In recent years, with the development of wireless sensing technology and the widespread popularity of WiFi devices, human perception based on WiFi has become possible, and gesture recognition has become an active topic in the field of human-computer interaction. As a kind of gesture, sign language is widely used in life. The establishment of an effective sign language recognition system can help people with aphasia and hearing impairment to better interact with the computer and facilitate their daily life. For this reason, this paper proposes a contactless fine-grained gesture recognition method using Channel State Information (CSI), namely Wi-SL. This method uses a commercial WiFi device to establish the correlation mapping between the amplitude and phase difference information of the subcarrier level in the wireless signal and the sign language action, without requiring the user to wear any device. We combine an efficient denoising method to filter environmental interference with an effective selection of optimal subcarriers to reduce the computational cost of the system. We also use K-means combined with a Bagging algorithm to optimize the Support Vector Machine (SVM) classification (KSB) model to enhance the classification of sign language action data. We implemented the algorithms and evaluated them for three different scenarios. The experimental results show that the average accuracy of Wi-SL gesture recognition can reach 95.8%, which realizes device-free, non-invasive, high-precision sign language gesture recognition.


Assuntos
Gestos , Reconhecimento Automatizado de Padrão , Língua de Sinais , Adulto , Algoritmos , Feminino , Humanos , Masculino , Máquina de Vetores de Suporte , Adulto Jovem
16.
Sensors (Basel) ; 20(3)2020 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-31979169

RESUMO

Sensor nodes perform missions based on the effectual invariable coverage of events, and it is commonly guaranteed by the determinate deployment for sensor nodes who deviate from the optimum site frequently. To reach the optimal coverage effect with the lowest costs is a primary goal of wireless sensor networks. In this paper, by splicing the sensing area optimally with cellular grids, the best deployment location for sensors and the required minimum number of them are revealed. The optimization problem of coverage rate and energy consumption is converted into a task assignment problem, and a dynamic partition algorithm for cellular grids is also proposed to improve the coverage effect when the number of sensors is variable. Furthermore, on the basis of solving the multi-objective problem of reducing and balancing the energy cost of sensors, the vampire bat optimizer is improved by introducing virtual bats and virtual preys, and finally solves the asymmetric assignment problem once the number of cellular grids is not equal to that of sensors. Simulation results indicate that the residual energy of sensors during redeployment is balanced notably by our strategy when compared to three other popular coverage-enhancement algorithms. Additionally, the total energy cost of sensor nodes and coverage rate can be optimized, and it also has a superior robustness when the number of nodes changes.

17.
Sensors (Basel) ; 19(17)2019 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-31450661

RESUMO

With the wide application of Channel State Information (CSI) in the field of sensing, the accuracy of positioning accuracy of indoor fingerprint positioning is increasingly necessary. The flexibility of the CSI signals may lead to an increase in fingerprint noise and inaccurate data classification. This paper presents an indoor localization algorithm based on Density-Based Spatial Clustering of Applications with Noise (DBSCAN), Endpoints-Clipping (EC) CSI amplitude, and Support Vector Machine (EC-SVM). In the offline phase, the CSI amplitude information collected through the three channels is combined and clipped using the EC, and then a fingerprint database is obtained. In the online phase, the SVM is used to train the data in the fingerprint database, and the corresponding relationship is found with the CSI data collected in real time to perform matching and positioning. The experimental results show that the positioning accuracy of the EC-SVM algorithm is superior to the state-of-art indoor CSI-based localization technique.

18.
Sensors (Basel) ; 19(14)2019 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-31340502

RESUMO

Amid the ever-accelerated development of wireless communication technology, we have become increasingly demanding for location-based service; thus, passive indoor positioning has gained widespread attention. Channel State Information (CSI), as it can provide more detailed and fine-grained information, has been followed by researchers. Existing indoor positioning methods, however, are vulnerable to the environment and thus fail to fully reflect all the position features, due to limited accuracy of the fingerprint. As a solution, a CSI-based passive indoor positioning method was proposed, Wavelet Domain Denoising (WDD) was adopted to deal with the collected CSI amplitude, and the CSI phase information was unwound and transformed linearly in the offline phase. The post-processed amplitude and phase were taken as fingerprint data to build a fingerprint database, correlating with reference point position information. Results of experimental data analyzed under two different environments show that the present method boasts lower positioning error and higher stability than similar methods and can offer decimeter-level positioning accuracy.

19.
Sensors (Basel) ; 19(4)2019 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-30791554

RESUMO

With the rapid development of wireless network technology, wireless passive indoor localization has become an increasingly important technique that is widely used in indoor location-based services. Channel state information (CSI) can provide more detailed and specific subcarrier information, which has gained the attention of researchers and has become an emphasis in indoor localization technology. However, existing research has generally adopted amplitude information for eigenvalue calculations. There are few research studies that have used phase information from CSI signals for localization purposes. To eliminate the signal interference existing in indoor environments, we present a passive human indoor localization method named FapFi, which fuses CSI amplitude and phase information to fully utilize richer signal characteristics to find location. In the offline stage, we filter out redundant values and outliers in the CSI amplitude information and then process the CSI phase information. A fusion method is utilized to store the processed amplitude and phase information as a fingerprint database. The experimental data from two typical laboratory and conference room environments were gathered and analyzed. The extensive experimental results demonstrate that the proposed algorithm is more efficient than other algorithms in data processing and achieves decimeter-level localization accuracy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...